
 
 
Abstract−−Spatial selectivity can be obtained when recording the 
activity of a peripheral nerve [1-4] or corticospinal pathways of 
the spinal cord [5] by circumferential placement of the metal 
contacts around the axon bundle. Selectivity indices that have 
been proposed [1-3], however, do not measure how the channel 
discriminability deteriorates in the presence of noise. The pattern 
of amplitude distribution across the recording sites during a 
neural  firing (a vector) can be considered as a symbol received at 
the end of an information channel. Thus, the performance of the 
neural interface/recording method can be quantified for the noisy 
case and compared with others using the classic formulaé for the 
information channels. Monte Carlo simulations in this study show 
that the decay of information transfer rate with noise can 
differentiate between neural interfaces that have identical spatial 
selectivity indices based on the Euclidian distance measure [2]. 
Noise tolerance can be the method of choice to assess the 
performance of multi-channel neural interfaces in terms of 
channel discrimination. 
Keywords−−selective nerve recording, neural interface, signal-to-
noise ratio, information rate. 

 
I. INTRODUCTION 

 
Several spatial selectivity measures have been proposed for 

multi-channel recordings of peripheral neural activity [1-4]. 
The Euclidian distance measure [2] has been adapted as a 
measure of selectivity for multi-contact recordings of the spinal 
cord [5]. However, the information provided by these measures 
is not very practical since it does not convey how discriminable 
the channels would be in the presence of noise. In a noiseless 
system, any level of selectivity is perfect since all the channels 
can be distinguished without error. In a neural prosthetic 
application, however, the noise tolerance will determine the 
effective rate of information transfer for neural signals. 

Information transfer rate was proposed as a standard measure 
of performance for brain-computer interfaces based on the 
accuracy of the selections made by the subject [6]. In this 
paper, we apply this analysis to quantify the performance of the 
neural interface alone without the subjective component. We 
assume that the noiseless version of the neural data is available. 
In several hypothetical cases, the Euclidian distances between 
the symbols, i.e. parameter vectors, are calculated and Gaussian 
distributed white noise is superimposed to simulate the 
background thermal noise and/or neural contamination. The 
simulations indicate that the decay in the information rate with 
noise is sensitive to the location of individual symbols in the 
vector space. Using this analysis, one can find the theoretical 
information transfer rate for any amount of background noise 
and thereby compare multi-channel recording interfaces 
/techniques based on their noise tolerance. 

 
 

II. SIMULATIONS 
 
A. Correct Classification of Symbols/Vectors with Noise 
 

Let us consider a case where we have a set of m dimensional 
n orthogonal vectors with unit lengths. Each vector consists of 
a set of characteristic measurements (amplitude, temporal 
duration, slope, etc.) taken from the neural signals. Although 
neural signals are analog in nature, any analog signal can be 
represented with discrete samples. In this analysis, the 
measurement vectors will be considered as symbols transferred 
through a noisy channel, i.e. the neural interface. During the 
transfer, the vectors are contaminated with Gaussian distributed 
white noise. The probability of correctly classifying a newly 
generated (received) vector at the end of the channel will be 1 
for zero noise and it will decrease as the noise is increasing. 
One can statistically find this probability using the Monte-
Carlo approach, i.e. with many realizations of the noise 
component superimposed on the original vectors. The 
probability of correct classification is shown in Fig. 1 for 
m=n=2,3,4, and 5 for noise varying from zero to hundred 
percent. Notice that the larger the number of vectors in the set, 
the lower the probabilities are despite the fact that the vector 
dimension (m) is also increased along with the number of 
vectors in the set (n).  
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Fig. 1. Probability of correctly classifying a new vector that is 
identical to one of the vectors in a set of n dimensional n orthogonal 
vectors with unit lengths. Standard deviation of the Gaussian 
distributed noise that contaminates the new vector is varied from zero 
to hundred percent of unity.  Probability of correct classification is 
the same regardless of which vector is generated in the orthogonal set 
and therefore only one vector is shown. 
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B. Classification of Non-Uniform Distribution of Symbols in 
the Vector Space 

 
Let us now consider the two different vector configurations 

in Figs. 2a and 2b. The Euclidian distance measure [2] gives 
the same selectivity value in both cases (45.4%), and therefore 
does not make any distinction between them. We now calculate 
the probability of correct classification for each case for 
various levels of random noise as shown in Fig. 3a and 3b 
respectively. Unlike the orthogonal set in Fig. 1, the 
probabilities are different depending on which vector in the set 
is generated. The probability of correct classification is higher 
for those vectors on either side of the distribution than the ones 
in the middle. A comparison of Fig. 3a and 3b reveals that the 
vectors of each set have different levels of noise tolerance. 
 

 

C. Information Transfer Rate vs. Noise 
 
The probability of generation for each vector in the alphabet 

and the rate at which these vectors will be generated are the 
functions of the source, i.e. dependent on the subject who 
generates the signals volitionally, or the task that is being 
conducted. Thus, we will assume that all the vectors are 
generated with equal probability and will use bit rate/trial 
rather than bits/second to eliminate the subject/task dependency 
of the analysis. Having found the probabilities of correct (pii) 
and false (pij) classification statistically, one can calculate the 
bit rate/trial using the classic formula given by Shannon for the 
information rate[7]: 
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where N is the number of vectors (symbols), Pi is the 
probability of generation for each vector (here all are assumed 
to be equal to 1/N), and pij indicates probability of classifying 
ith vector as jth vector.  

The corresponding bit rates to the cases shown in Figs. 3a 
and 3b are plotted in Fig. 4. The theoretical maximum 
information transfer rate for a channel that has an alphabet of 5 
symbols is 2.32 bits for zero noise as shown in Fig. 4. The bit 
rate falls as the noise is increasing. Notice the large difference 
in the bit rates for noise levels lower than 20%. This is due to 
difference in the location of the vectors in the two dimensional 
space (Fig. 2). 

A plot of information transfer rate vs. noise may not be 
convenient to describe the effectiveness of a neural interface. 
Instead, one may prefer to take a representative value from the 
information transfer rate vs. noise graph and convey that single 
value. For instance, one may use the noise value at which the 
bit rate drops to 90% of the maximum theoretical bit rate. The 
noise tolerances that correspond to 90% of the maximum bit 
rate (2.088 bits/trial) are 3.22% and 8.54% respectively for the 
cases A and B in Fig. 4.  

 
 

Fig. 3. Probability of correct classification for the vectors shown 
in Fig. 2a and 2b are plotted in A and B respectively using the 
Monte-Carlo method (10,000 realization of the noise component 
for each point). Labels indicate which vectors in Fig. 2 are 
generated. 
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Fig. 2. Two different configurations of five unit vectors in 2 
dimensional space. Vector angles from horizontal are A) 0, 20, 40, 60, 
and 75 degrees, B) 0, 39, 45, 51, and 90 degrees. 

Fig. 4. Information rate against varying amounts of noise for the 
cases in Fig. 2. 
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III. CONCLUSIONS / DISCUSSION 
 

This simulation shows that any measure of selectivity for a 
multi-channel neural interface should account for noise. The 
location of each symbol in the vector space determines the 
discriminability of that channel at the given noise level, which 
in turn has a  contribution to the overall information transfer 
rate for the interface. Noise tolerance may be a more practical 
measure for channel discrimination of neural interfaces than 
selectivity measures that do not account for noise [1-3]. 

This analysis assumes that all the symbols (or measurement 
vectors) are generated with equal probability (Pi). One can 
calculate the maximum transfer rate (i.e. channel capacity) by 
adjusting the probabilities of the source and thus matching it to 
the channel for each different level of noise. The channel 
capacity can be plotted as a function of noise to study the noise 
tolerance of the interface. However, one usually does not have 
the flexibility to change the probabilities of occurrence for each 
symbol once the channels are dedicated to certain tasks in a 
neural prosthetic application. Thus, here we assumed that all 
the channels are used with equal probability. 

The signals here could be the neural signals obtained from 
sensory peripheral nerves that are used to close a control loop 
in a neural prosthetic device or could be the signals recorded 

 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from the central nervous system as a means of generating 
voluntary command control. In either case, the theoretical 
analysis described in this paper can be adopted to compare 
various selective recording methods/interfaces in terms of their 
performance. 
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